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1 Introduction

CVL is a library of low-level vector routines callable from C. This library presents an abstract
model of a vector machine suitable either for stand-alone use or as the backend of a high-level
language system. CVL includes a rich set of vector operations including both elementwise compu-
tations, and more global operations such as scans, reductions, and permutations. The library also
includes segmented versions of these global operations; segmented operations are crucial for the
implementation of nested data-parallel languages [1, 7, 4].

The vector machine model provided by CVL is very low-level and was designed so that efficient
versions of the library could be developed for a wide variety of parallel architectures. Currently,
optimized versions of the library are available for the Connection Machine CM-2 and CM-5, and
the Cray Y-MP and Y-MP/C90. We and others are developing versions for the MASPAR MP-
1 (10] and for a network of workstations communicating with PVM [11]. There is also a portable
serial version of the library. Many of the primitives provided by the library (in particular the scan
operations) are much faster than could be easily achieved with Fortran or C implementations on
these machines. This allows CVL to be used as an efficient stand-alone library.

CVL was designed to provide a vector abstraction that can be used for the implementation of
higher-level data-paraflel languages. The authors have designed and implemented the nested data-
parallel language NESL [2]. This language compiles into an intermediate language, VCODE [3, 6],
which is then interpreted. The interpreter uses CVL to implement the required vector routines. In

addition to our work, a research group at Link6ping University in Sweden has targeted VCODE and
CVL as compiler backends for the Predula parallel language [91, and researchers at the University of
North Carolina, Chapel Hill, have targeted CVL for the data-parallel portion of the Proteus [12, 13]
language.

This paper is intended for CVL users and implementors. We also assume familiarity with vector
operations and the scan-vector model of parallel computation [1]. Because of its intended audience
and the low-level nature of the CVL abstractions, this paper has lots of grungy details that would
probably not be interesting to a casual reader. We strongly urge the reader to read the NESL
implementation paper [4], in order to understand the context in which CVL was designed. A
high-level description of the vector operations provided by CVL can be found either in Blelloch's
thesis [1] or in the published descriptions of VCODE [3, 6]. Low-level details on how scans and
segmented operations can be efficiently implemented on vector machines are also available [8].
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CvL is a C library implementing a variety of vector operations on elements of a homogeneous vector

memory. This vector memory should be viewed as distinct from the standard C heap or stack, and
should only be accessed and modified through the CvL routines.

The CVL memory model distinguishes between vector length and vector size. Vector length is
the number of elements in a vector; vector size is the number of "units of the vector memory"
occupied by a vector. The vector memory unit is an implementation-dependent abstract quantity ...
and may indicate nothing about the number of bytes or words taken up by a vector. In most

implementations it refers to the amount of memory used per processor to hold the vector. An
integer vector of length 1000, for example, might only require 4 units of vector memory in one CVL
implementation and 500 in aniother.

CVL provides functions that map the length of a vector to its size; there is one such function
for each element type. For example, siz-foz(len) returns the size of a vector of Integers, given



the vector's length. The inverse mapping is not supplied and need not be unique-many vector

lengths might map to a single vector size. Both vector length and vector size have C type integer.

This distinction between vector length and size, and their dependence on type, give added flex-
ibility to the CVL implementor: they allow different mappings of data on multiprocessor machines.
allow boolean vectors to be packed into bit vectors, and allow an implementation to pad vectors
to larger sizes.

CVL defines the C type vec-p as an abstract handle for accessing vector memory. For each
vector in memory, there is a vectp, and all references to that vector must be made though that

vec.p. A vec.p should be thought of as a pointer into vector memory, but its realization may

be more complicated. CVL defines an interface for manipulating and performing the equivalent of
pointer arithmetic on a vec-p. For example, given a vec-p int.vec corresponding to a integer
vector of length len, the call

vec-p new.vec = add-fov(int-vec, siz-foz(len));

gets a new vec.p, vec.new, that corresponds to a block of memory guaranteed not to overlap
in:_..vec in vector memory. This is intended to be reminiscent of adding an offset to a pointer.

Note that the offset argument to the vec-p arithmetic functions must be based on vector size, not
vector length. Similarly, there is a function sub.f ov(vec.pl, vec.p2) that corresponds to pointer

subtraction and returns the size of the largest possible vector that has vec.pl as a handle and does
not overlap a vector with handle vec-p2.

Vector memory is allocated using the aloefoz(size) CvL function. This returns a vec-p for a

block of vector memory of the requested size. If there is an error, NULL is returned. Vector memory

is deallocated using fre- ov (vec.p); the argument to the free function must have been the result
of a call to aleofoz. The current CVL specification allows only a single block of memory to be
active during program execution; a program using CvL can only have a single call to aloefoz.
Multiple calls to aloefoz have undefined, implementation-dependent semantics.

CvL provides no memory management facilities other than the allocate/free functions just
described and the vec.p arithmetic functions. It is the responsibility of programs using CVL to
break up the block returned by aloefoz into pieces for storing individual vectors. One way of
doing this, used in .an interpreter for VCODE, is described in [5].

CvL instructions generally take handles to all their source and destination vectors. In addition,
there is a length argument for each vector (except when several arguments are required to have
the same length), and a segment descriptor argument for each segmented operand. Almost all CvL
functions take as a final argument a vec.p for a scratch space which the function may use for
storage of intermediate vectors (see below for an example of this). Thus, the function add-vuz()
(which adds corresponding elements of two integer vectors) has the prototype:

void add-wuz(vec-p dest, vec-p srcl, vec-p src2, int ion, vec-p scratch)
For each CVL vector function fooebar, there is a function foo-bar-scratch(len) (or, for segmented

CvL instructions, fooebar.scratch(ien, num-segs)) which returns the amount of scratch space
needed by that function on vectors of length len (with num segs segments). This scratch area is
required because, for some instructions on some architectures, the amount of extra space required
may depend on vector length or size. For example, an implementation of the pack function may
build an internal index vector; this vector would be put in the scratch space.

Let us take a look at a CVL fragment that puts all this together. Suppose that we have two
integer vectors, a and b of length len, allocated at the start of vector memory. We wish to put the
elementwise sum of these vectors into a new vector, allocated after b in memory:
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vec.p add.vectors(vec.p a, vec.p b, int len) {
vec.p sum a add-fov(b, siz_foz(len));
vec.p scratch a add-fov(sum, sizfoz(len));
add-vz(sum, a, b, len, scratch);
return sum;

}

First we use the vec.p addition function to get handles to two distinct regions of memory after b
that can contain the sum and the scratch area. Then we use these as arguments to the add-vuz
function which does all the work. More complete CVL code is given in Appendix B.

This function assumed that there was enough memory available to store the result and scratch
vectors. There is no requirement that add-fov do any error checking: the result of the call may
be an illegal handle. In general, CvL does no error checking. It is the responsibility of the calling
program to manage vector memory and make sure that enough space is available.

3 CVL Data Types

All CVL instructions operate on homogeneous vector arguments whose elements are of a specific
type. For example, there are separate elementwise addition functions for vectors of doubles and
for vectors of integers. The allowed element types are int, double, and cvl-bool. Integers and
doubles are the standard (machine-dependent) size and precision; booleans might be stored as
words, chars, bits, etc., depending on time and space tradeoffs. It is the responsibility of the calling
program to use the CvL function that corresponds to the type of the elements of a vector. CVL is
low-level and has (at best) minimal error detection; failure to use the correct function may lead to
unpredictable results or compile- or run-time failures.

There are two varieties of CVL vectors: segmented and unsegmented [1]. An unsegmented
vector is a standard vector: a one-dimensional data structure containing elements of the same
type. A segmented vector is a data structure consisting of a group of vectors of the same element
type. Segmented vectors have the property that a function applied to them applies to each of
its segments independently. For example, a plus reduction of a segmented vector will sum each
segment:

segmented-plus-reduce [[7 2 9] [8 4 5 6 3]] = [18 26].

The CVL implementation of a segmented vector is an unsegmented vector together with a seg-
ment descriptor that describes how to partition the vector into sub-vectors. Most CVL functions
on unsegmented vectors have a counterpart for segmented vectors. These functions perform the
unsegmented function on each sub-vector and package the result into a new segmented vector.

Segment descriptors are stored in the vector memory along with the vectors. There are two
length quantities associated with each segment descriptor: the number of segments and the total
number of elements in the vector. For example, the segmented vector

s a ['[7 2 9) [8 4 S 6 3))

has 2 segments and 8 elements. The segmented vector s would be represented as an unsegmented
vector of eight elements

v a [7 2 9 8 4 5 6 3)

and a segment descriptor that describes the partitioning. One concrete representation of a segment
descriptor is a vector of segment lengths:
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d - (3 5],

another is a vector of the indices of the initial element of each segment:

d' a CO 3].

The internal representation of a segment descriptor is implementation-dependent; the only restric-
tion is that vectors and segment descriptors are both handled by objects of C type vec.p.

Since not all CVL functions (the elementwise ones, for example) need segmentation information,
unsegmented CVL functions (an elementwise operation, for example) may take a segmented vector
as an argument, and operate on that vector withotut regard to segmentation.

All segmented functions must be supplied with segment descriptor and both length quantities
as arguments. For example, the prototype for the segmented plus scan operation is:

void add-nez (vec.p dest, vec-p src, vec.p segd, int vectlen,
int seg-count, vec.p scratch)

A segment descriptor can only be created with the
mke-fos(vec-p out.segd, vec.p lengths, int vec-len, int seg.count,

vec.p scratch)
function: lengths is a vector of length seg.count containing segment lengths and vec.len is the
number of elements in the vector; the segment descriptor is returned in out.segd. The size of a
segment descriptor is determined with the function

siz-fos(int vec-len, int seg.count).

4 Instruction Classes

This section classifies the instructions supplied by CVL. Full descriptions of each routine and its
arguments are given in Appendix A.

CVL functions are named according to a strict naming convention for easy recall. The name of
each CVL function has four components. The first is a three letter mnemonic for the root function
being applied: e.g., add, sub, lsh (left shift), sel (select). The second field is a consonant denoting
a modifier for the function that explains how it is used: e.g., r (reduce), s (scan), p (permute).
The next field is a vowel indicating the kind of vector to which the function is to be applied: u
(u1nsegmented), e (segmented), and o (none or scalar). The final field is a consonant specifying the
type of the elements of the vector: e.g., b (boolean), z (integer), s (segment-descriptor). The first
field is separated from the next three by an underscore. Table 1 gives the complete list of modifiers.
Mix and match name fields for the function you need.'

For each CVL function (with the exception of a few of the facility functions) there are two
auxiliary functions with names ending in the extensions -scratch and Anplace. The scratch
functions were discussed earlier and return the amount of scratch space required by a function, for
input of a given size. To provide better memory reuse and locality, CVL provides inplace auxiliary
functions for most CVL functions. These functions indicate which arguments of a CVL function
may be used destructively; in other words, which source vectors can be overwritten to form the
deitination vector. These inplace functions return the bitwise or of the appropriate subset of the
values

INPLACENONE, INPLACE-1, INPLACE_2.

1The consonant-vowel-consonant scheme for suffixes leads to pronounceable function names. You too will soon
have "add-wuz" and "len-fos" rolling off your tongue like a pro!
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function name = fun_[fun type] [vec -type] [element -type]
fun-type vec-type elementtype

w elementwise u unsegmented b boolean
s scan e segmented z integer
r reduce o none (scalar) d double
p permute s segment-descriptor
v vector-scalar v vec-p
f facilities
1 library

Table 1: Fields for CVL function names.

which must be defined in cvl .h. These values are of type unsigned int. For example, the second
source vector of an elementwise integer add can be overwritten only if

add-.uz-inplace() & INPLACE_2
returns a nonzero value.

The CVL library functions are divided into a number of different classes:

elementwise The elementwise operations perform a function either to every element of a vector
or to corresponding elements of several different vectors of the same length. Examples of ele-
mentwise operations include negating each element of a vector and adding the corresponding
elements of two vectors.

reduce The reduce functions combine all elements of a vector together under the operation of some
other function such as addition or minimum. Examples of reduce functions include summing
the elements of a vector and finding the smallest element of a vector. For zero length vectors,
the result is the identity element for the operation.

scan The scan instructions generalize the reduce functions by creating a vector whose ith element
is the reduction of the first i - 1 elements of the argument vector. The first element returned
is the identity element under the operation.

permute The permute functions rearrange the elements of a vector of values according to a vector
of indices. The simple permute is a scatter/send operation, while the back-permute is a
gather/get operation.

vector-scalar The vector-scalar operations convert vectors to scalars and back again. The extract
function returns a specified element of a vector; the replace function replaces a specified
element of a vector with a given value. The distribute function creates a vector of given
length, all of whose elements have the same specified value.

facilities The facilities operations perform needed system functions and deal with the representa-
tion of vectors and segment descriptors. Facility functions include vector memory allocation
and freeing, creation of segment descriptors, and computing the size of a vector whose ele-
ments are of some type.

library The library functions consist of a number of routines that could be expressed in terms of
other CVL functions, but which, for reasons of efficiency or consistency of the CVL model,
were implemented specially.



5 Conclusion

We are interested in any comments or bug reports about CVL and the contents of this technical
report. Source code for our implementations of CVL are available via anonymous ftp. For further
details, please send email to blellochocs. cmu. edu. Future changes in CVL are likely; please send
email to find out about the latest version of the library.

A CVL Instructions

This appendix gives a description and the interface definition for each CVL instruction. Most
functions will be defined on all data types for which the operation makes sense; not all valid type
signatures are given here.

As a general rule, the first argument to a CVL functions is a vec-p curresponding to the desti-
nation argument. The contents of this vector will be overwritten with the result of the operation.
Each non-facility function takes as its final argument a vec.p that refers to a scratch space. The
required minimum size of this scratch space is returned by fun.scratch(len), where len is the
length of the vector arguments to the function fun.

A. 1 Facilities

1. The size functions return the number of vector memory units required by a vector of given
type and length. In the case of segment descriptors, both the length of the segment descriptor
and the length of the unsegmented vector must be supplied.

int siz.foz (nt length)
int siz-fob (nt length)
int siz-fod (int length)
int siz-fos (int vec-len, int seg-count)

Note- Vectors and segments of a vector may have zero length. All CVL functions must work
probably when the length argument is zero.

2. Segment descriptors are created from a vector of segment sizes using the mke.fov function.
The inverse function is len__fos. There are scratch functions corresponding to both of these
functions.

void mke-fov (vec-p segd, vec-p lengths, int vec-len, int seg.count,
vec-p scratch)

void len.fos (vec-p lengths, vec.p segd, int vec-len, int segEcount,
vec-p scratcb)

void mke-fov-scratch (int vec-len, int seg.count)
void len-fos.scratch (int vec-len, int seg.count)

Here, lengths is an integer vector containing segment lengths, segd is a segment descriptor,
vec-len is the length of the unsegmented vector (the sum of the values in lengths), and

seg-count is the number of segments (number of elements in lengths).

3. CvL provides memory allocation and freeing instructions. As explained earlier, these func-
tions may only be invoked once per program execution.

vec.p alo-foz (int size)
void fre-fov (vec-p vec)

• • ' I a l l l || | 6



alo-foz tries to allocate size units of vector memory. The allocation function returns

(vec.p)NULL if the allocation fails.

4. CvL provides a move vector instruction:
void mov-fov(vec.p dest, vec-p src, int size, vec.p scratch)

void mov-fov.scratch(int size)

This instruction moves a block of vector memory from one location to another. The im-

plementation of mov..ov must allow situations in which the source and destination vectors

overlap.

5. CvL provides the following arithmetic functions on the vec-p type:

vec-p add-fov(vec-p v, int a)
int sub.fov(vec-p v1, vec.p v2)
cvl-bool eql-fov(vec-p v1, vec.p v2)
int cmp-fov(vec-p v1, vec-p v2)

The add function takes a vec-p v and an integer a and returns a new vec-p corresponding

to a region of vector memory that is guaranteed not to overlap a vector with vec-p v and

size a. The subtract function takes two vec.p arguments and returns the size of the largest

vector that may be stored at the first argument without overlapping a vector stored at the

second. The equality function returns 1 if the two arguments refer to the same region of

vector memory 2 and returns 0 otherwise. The compare function compares two vec.ps and

returns a positive value if vi corresponds to a region of vector memory after that of v2,

returns 0 if the vec-ps are equal (in the sense above), and returns a negative value otherwise.

Implementation note: The actual pointer to vector memory (either the vec.p or one of its

components) must be "maximally aligned." In other words, given a vec.p, a vector of any

type must be storable in the corresponding memory block. Without this property, it might

not be possible, for example, to move an integer vector into the location once held by a

boolean vector. The implementations of alo-oz and add.Iov must guarantee this property

of the vec.p returned.

6. CvL includes two timing functions for benchmarking purposes. The get time function,

tgt.f os, stores a time stamp in a structure of type cvl-timer.t. The time difference func-

tion, tdf _fos, takes two such structures and returns a double precision count of the number

of seconds between the two events.
void tgt.._fos (cvltimer-t *time)
double tdf-fos (cvl-timer-t *tI, cvl-timer-t *t2)

7. To provide a convenient interface between normal C arrays and the CvL vectors, CVL provides

translation functions that convert between the two:

void v2c-fuz(int *dest, vec.p src, int len, vec-p scratch)

void c2v-fuz(vec-p dest, int *src, int len, vec.p scratch)

v2c writes the contents of a vector into a unit-stride C array; c2v performs the inverse

operation. These instructions exist for boolean, integer and double precision types. They do

not exist for segment descriptors; these must first be converted to/from length vectors.

2 This does not necessarily mean that v1 - v2. One possible implementation of a vec.p is as a pointer to a

structure, within which is a pointer into vector memory; eql-fov should return I if the pointer fields of the structure
are equal.

7



A.2 Elementwise functions

All source and destination arguments to elementwise functions must be of the same length, which is
supplied as a parameter. The same elementwise function works on either segmented or unsegmented
vectors, with no segment descriptor required.

The logical functions and, ior, and not are defined on both integers and booleans. They act
as bitwise operators on integers and as logical operators on booleans.

Table 2 gives a list of aUl the elementwise functions provided by CVL.

1. The unary elementwise functions include the type conversion routines (int, dou, and boo),
various arithmetic functions (flr, cei, trn, rou, log, exp, sqt), negation, and copy. cpy-irus
takes both segment count and vector length arguments.

void not.vuz (vec-p dest, vQc-p src, int ion, vec.p scratch)
void cpy-vuz (vec-p dest, vec-p src, int len, vec-p scratch)
void cpy.vus (vec-p dent, vec-p src, int vec-len, int seg-count,

vec-p scratch)

2. The binary elementwise functions include all the standard arithmetic, logical, and comparison
functions.

void add.vuz (vec-p dest, vecp srcl, vecp src2, int len, vec-p scratch)

3. The only ternary function is select. The select operations take three vector source argu-
ments: a boolean vector and two vectors of the same type.

void sel-nub (vecp dest, vecp bool-vec, vec-p sI, vec-p 92, int ten,
vec.p scratch)

The result vector has value:
destti] - (bool-vecri] ? sl[i] : s2[i])

A.3 Scan and Reduce

The reduce functions combine all the elements in the source vector, using the identity element
as the initial combining element. The unsegmented reduce returns this value; the segmented
version combines each segment independently and returns all these results in the destination vector
argument.

int addruz (vec-p src, int len, vec-p scratch)
void add-rez (vec-p dest, vec.p src, vec-p segd, int vec-_en,

int seg-count, vec-p scratch)
The scan functions compute a running reduction of the source vector and return this result in

a destination argument. As with the reduce functions, the identity element is the initial combiner.
void add-suz (vec-p dest, vec-p src, int len, vec-p scratch)
void add-sez (vecp dent, vec-p src, vec-p segd, int vec-len,

int aeg-count, vec-p scratch)
Scan and reduce functions are provided for addition, subtraction, multiplication, or, and, xor,

maximum, and minimum.
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function element type C equivalent

mnemonic function b z d s

add addition x x d = a + b
sub subtraction x x d = a - b

eql equal x x x d = a == b

cpy copy x x x x d = a
min minimum x x d = min(a, b)

max maximum x x d = max(a, b)

mul multiplication x x d = a * b
div division x x d = a/b
mod modulus x d = a%b
rnd random x d = random(%a
Ish left shift x d = a << b
rsh right shift x d = a >> b
grt greater than x x d = a > b
les less than x x d = a < b

geq grt than or eq x x d = a >=b
leq less than or eq x x d = a <=b
neq not equal x x x d = a != b

not not x x d = !a, d = -a
ior inclusive or x x d = allb, d = alb
and and x x d = a&&6, d =a&k

xor exclusive or x x d = a'b

log natural log x d = log(a)
exp exp x d = exp(a)
sqt sqrt x d = sqrt(a)
sin sine x d = sin(a)
cos cosine x d = cos(a)

tan tangent x d = tan(a)
asn arcsin x d = asin(a)
acs arccosine x d = acos(a)

atn arctangent x d = atan(a)
snh sinh x d = sinh(a)
csh cosh x d = cosh(a)
tnh tanh x d = tanh(a)

sel select x x x d=c?a:b
int integer x x d = (int)(a)
dbl double x d = (double)(a)
boo bool x d = !!(a)
fir floor x d = (int)floor(a)

cei ceiling x d = (int)ceil(a)
trn truncate x d = (int)(a)
rou round x d = (int)rint(a)

Table 2: List of elementwise CVL functions. In each case, d refers to the destination vector, and
a, b, and c are the argument vectors. For ior, and, and not the two versions are for booleans

and integers, respectively. The semantics of each elementwise function is equivalent to the those
defined by ANSI C for the C version in this table.
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A.4 Permute

The permute functions take source and index vectors and write the result into a destination vector.
Simple and backward permutes, both segmented and unsegmented, are part of the basic library.
Also provided are backward and forward flag permutes, and forward default and default-flag per-
mutes. For those permute operations with differing source and destination lengths, two sets of
length or segment descriptor arguments must be provided. Any constraints on vector arguments
given below must also be satisfied by each segment in the segmented version of the operation.

1. Simple (or forward) permute puts an element into the location in the destination given by the
index vector: dest[index[i)] = src[i]. The elements of index must be a proper permu-
tation (all indices present, and no repetitions) of the allowable range. All vector arguments
must be the same length.

void smp-puz (vec-p dest, vec-p src, vec-p index, int len,
vec-p scratch)

void smp-pez (vec-p dest, vec-p src, vec-p index, vec-p segd,
int vec-len, int seg-count, vec-p scratch)

2. Backward permute gets an element from the indexed location:
dest~i] - src~index[i]]

The destination and index vectors must be of the same length, which can differ from that of
the source.

void bck-puz (vec-p dest, vect, src, vec-p index,
int src-len, int dest-len, vec-p scratch)

void bck-pez (vec.p dest, vec-p src, vec-p index,
vec-p src.segd, int src-vec-len, int src-seg-count,
vec.p dest-segd, int dest-vec-len, int dest-seg-count,
vec-p scratch)

3. The default permute operation is a simple permute that relaxes the restriction that the source
and destination must be of the same length. Any unassigned position in the destination gets
its value from the corresponding position of a default vector.

void dpe-puz (vec-p dest, vec-p src, vec-p index, vec-p default,
int src-len, int dest-len, vec-p scratch)

void dpe-pez (vec-p dest, vec-p src, vec-p index, vec-p default,
vec.p src-segd, int src-vec-len, int src-seg-count,
vec-p dest-segd, int dest-vec-len, int dest.seg-count,
vec.p scratch)

4. The flag permute is a combination of the select and permute operations: a flag vector de-
termines whether or not each element is moved. The set of indices and values not masked
are the arguments to the appropriate permute operation. For example, in the simple flag
permute (f pm):

if (flags[i]) { dest[inde. ill] src(i]; }
In the backwards flag permute (bfp), unfilled positions in the destination vector are set to 0
or false. There are simple (fpm), backward (bfp), and default (dpf) flag permute operations.

void fpm-puz (vec.p dest, vec-p src, vec-p index, vec-p flags,
int src.len, int dest-len, vec.p scratch)
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void fpm-pez (vec-p dest, vec-p src, vec-p index, vec-p flags,
vec-p src-segd, int src-vec-len, int src-seg-count,
vec-p dest-segd, int dest-vec-len, int destý.segcount,
vec-p scratch)

void bfp-puz (vec-p dest, vec-p src, vec-p index, vec-p flags,
int src-len, int dest-len, vec-p scratch)

void bfp-pez (vec.p dest, vec-p src, vec.p index, vec.p flags,
vec.p src.segd, int src-vec-len, int src.seg-count,
vec.p dest-segd, int dest-vec-len, int dest-seg-count,
vec.p scratch)

void dpf.puz (vec.p deat, vec-p src, vec-p index, vec.p flags,
vec-p default, int src-len, int dest-len,
vec.p scratch)

void dpf-pez (vec.p dest, vec-p src, vec-p index, vec-p flags,
vec.p default,
vec.p src-segd, int src-vec-len, int src-seg.count,
vec-p dest.segd, int dest.vec-len, int dest-seg-count,
vec.p scratch)

A.5 Vector-scalar

Extract, replace, and distribute functions exist in both segmented and unsegmented versions. Ex-

tract is an indexing function that removes the requested element from a vector and returns a scalar
(unsegmented version) or an unsegmented vector (segmented version). Replace is the inverse oper-
ation. It is a destructive operation, modifying the contents of the destination vector. The output

of distribute is a vector of given length, all of whose elements have a given value.
void dis.vuz (vec.p dest, int value, int len, vec-p scratch)
void dis.vez (vec.p dest, vec-p value, vec.p dest-segd,

int dest-vec-len, int dest-seg.count, vec.p scratch)

int ext.vuz (vec-p src, int index, int len, vec.p scratch)
void ext-vez (vec.p dest, vec.p src, vec.p index, vec-p src-segd,

int src-vec-len, int src-seg-count, vec.p scratch)

void rep.vuz (vec-p src, int index, int value, int len, vec-p scratch)
void rep-vez (vec-p dest, vec-p src, vec.p value, vec.p segd,

int vec-len, int seg-len, vec-p scratch)

A.6 Library

CVL also contains a set of library functions. These tanctions could be implemented in terms of the
other primitives, but for efficiency, may be implemented directly.

1. The pack primitive has been divided into two parts, pkl and pk2.' The first part of pack,
pki..ev (this function is independent of element type), takes a flag vector, and returns a
value (vector) giving the number of true elements (in each segment).

'This was done in order to facilitate memory management. The first part of the operation provides information
required to obtain a vec.p for the results of the second part.
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int pkl-luv (vec-p flags, int vec-len, vec.p scratch)
void pkl-lev (vec.p dest, vec.p flags, vec.p segd,

int vec.len, int seg-count, vec-p scratch)

If flags - [T F] [F F T T], then after calling pkL-lev, the value of dest is [l 2). The

pk2_Ae* functions fill a destination vector with elements corresponding to the true elements

of the flag vector.
void pk2_luz (vec.p dest, vec.p src, vec-p flags,

int srcjen, int dest-len, vec-p scratch)
void pk2-lez (vec.p dest, vec.p src, vec-p flags,

vec.p src.segd, int src-vec-len, int src-seg-count,
vecp dest.segd, int dest.vec-len, int dest-seg.count,

vec.p scratch)

It is the responsibility of the calling function to use the result of the first pack step to allocate

the destination vector and destination segment descriptor.

2. The index function generates a vector of integer values, starting from a given initial value,
with given stride, and generating a given number of values. CVL provides both segmented

and unsegmented index functions.
void ind.luz (vec.p dest, int init, int stride, int count, vec.p scratch)
void ind-lez (vec.p dest, vec.p init, vec.p stride, vec-p count,

vec.p dest.segd, int dest-vec-len, int dest.seg-count,

vec-p scratch)

The arguments to the index functions are similar to those of the distribute functions.

3. CVL provides rank functions for sorting vectors of doubles or integers. Rank returns a per-

mutation indicating how the source elements are ordered. For segmented rank, the result

restarts at 0 for each segment, i.e. each segment contains a permutation.
rku-luz(vec-p rank, vec.p src, int len, vec.p scratch)

rku.lez(vec.p rank, vec-p src, vec.p segd, int vec-len,
int seg-count, vec.p scratch)

The rku functions perform an upward rank (lowest element gets rank 0); the rkd functions
perform a downward rank (highest element gets rank 0). The source is an integer or double
vector. The result is always an integer vector. The rank is stable.

B Example: Dot Product

We give as an example of C code that uses CVL to calculate the dot product of two vectors. The code

is shown in Figure 1. Two vectors are generated by function calls inside the dot product function. 4

We could have eliminated some of the scratch checking by precomputing how much memory is

needed (since this only depends on vector length and which CVL operations are performed) before
doing the allocation.

"4These vectors would typically be passed as arguments, but we wanted to show how vector memory is allocated.
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/s Complete CVL example: dot product of double precision vectors.

* This routine takes a vector length as input. It allocates vector memory, calls two (dummy) functions

* to generate the operands for a dot product, computes the dot product, frees memory, performs (some)

- error checking, and returns the value of the dot product. This has all the gory details!

* We assume that the dummy functions take three arguments: a vector length, a vec-p in which to

* store the result, and some scratch space.

Sinclude <cvl.h> /= This contains all CVL declarations 4

double dotp(int lea){
voc-p v mo; /. vector memory: result of aIo.foZ ./
int vsiz. a sijzfod(lon); /* size of a double vector of length len ./

int vmemsize - 10 - vsize; /* amount of vector memory to allocate -I

vec-p a,b; I- two vector arguments ./
vec.p product; /* elementwise product of a and b 4

vsc-p scratch; /= scratch storage for CVL */
int scratch-needed; I. ammount of scratch needed by CVL function ./
double result; /= final result *l

men - alo.fox(muenusize); /. Allocate memory for vectors -/
if ( vin -w (vec.p) NILL ) { /. check for failure */

fprintf(stderr, "dotp: cvi could not allocate memory");
exit(l) ;

)
a 0 vinMe; /. store a at beginning 4

b = add-fov(a, vsize); /- store b right after a .1

product a add.fov(b, vaize); /* result of multiply goes here 4

scratch a add-fov(product, vsize); /* rest is for scratch .1

get.a(len, a, scratch); /* create first vector ./
got-b(len, b, scratch); /* create second vector 4

/* check if there is enough scratch space for the multiply operation */
scratch-needed = mul-fod-scratch(len);
check-scratch(vme., scratch, vmeLsize, scratch-needed);

nul-vud(product, a, b, len, scratch); /I elementwise multiply 4

/* check for enough scratch to do add reduce */

scratchnoeeded • add-rud-scratch(len);
check-scratch(vae., scratch, vae.Lsize, scratch-needed);
result = add-ruz(tmp, len, scratch); /. add reduce ./

fretfov(vmen); /* free up memory *1
return result;

I

/. check.scratch is a useful utility function for verifying that enough scratch space has been reserved.
* It assumes that the scratch vector is at the end of vector memory.
- exit() is called if an error is encountered.
5/

void check.-scratch(vec-.p vme., vec.p scratch, int vue..size, int scratch-needed)
{

if ((me.nsize - sub-fov(scratch, vnem)) < scratch-needed) {
fprintf(stderr, "Not enough scratch space.");
exit(1) ;

I

Figure 1: CVL code for dot product. This example demonstrates memory allocation, scratch space
checking and basic CvL function calls.
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C Changes

This section lists some of the changes between this and older versions of the CVL documentation.

change The general scan operation is no longer directly supported, and the ***_n** instructions have
all been renamed to ***-a**.

new Scan and reduce instructions for xor and multiplication have been added.

new The mov.Iov instruction has been added and the requirement that cpy.vu* handle overlapping
vectors has been removed.

new The v2c and c2v instructions have been added.

new The index and rank library instructions have been added.

change The inplace mechanism has been changed.

change The or-*** function has been renamed to ior_***; all functions now have a three letter root.
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